
1. STATIC AND QUASI-STATIC FIELDS 

Abstract — This paper deals with the numerical 
computation of eddy current problems by means of the volume 
integral equation method with edge element based shape 
functions. Two techniques are presented. One allows for the 
direct computation of the eddy current density. The other one 
demands the derivation of the electric vector potential to 
obtain the eddy current density. The differences between these 
methods are shown, especially the different gauging techniques 
needed. The efficiency and the accuracy of both methods are 
examined. 

I. INTRODUCTION 
The indirect electric vector potential method has 

become quite popular in the recent years and has been 
developed by Rubinacci, Albanese, and others in the late 
eighties [1]. It is suitable for a wide field of applications, 
such as error detection, shape identification or in the design 
process of novel devices. 

The novel direct method is introduced to give a suitable 
alternative to the established method. It is described in 
detail in [2]. 

II. PROBLEM DESCRIPTION 
Eddy currents in non-magnetic, electrically conductive 

materials are considered in the time domain. Ohm’s law and 
the induction law lead to the following equation 
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sA  is the source magnetic vector potential, J  the eddy 
current density, κ  the electrical conductivity, and 0µ  the 
magnetic field constant. Please note that the source 
magnetic vector potential sA  has to undergo a kind of 
gauging process depending on the chosen method. 

III. SYSTEM ASSEMBLY FOR THE ELECTRIC VECTOR 
POTENTIAL METHOD 

Introducing edge-element-based shape functions iN  and 
their rotations i∇× N  and applying the Galerkin method, 
the problem describing system of linear equations (SLE) 
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The obtained solution of the SLE are the integrals of the 
electric magnetic vector potential T  over the element edges 
of the discretized eddy current region. The eddy current 
density inside an element is obtained by derivation 
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V  is the element volume, ( )i∇× N r  the rotation of the 
edge shape function of edge i , and iT  the solution value of 
this edge. 

IV. SYSTEM ASSEMBLY FOR THE DIRECT METHOD 

Now, the edge-element-based shape functions iN  are 
used without a derivation. With application of the Galerkin 
method, the alternative SLE { } [ ]{ }U = Z I  with 
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The solution vector { }I  of the SLE contains the 
integrals of the eddy current density over an edge. The eddy 
current density is obtained by 
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Both methods require to satisfy the following conditions 
in the conducting domain Ω  

0∇⋅ =J         (10) 
and on its boundary ∂Ω  

0⋅ =n J         (11) 
with the outward normal vector n  on the boundary. 
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The Conditions of equations (10) and (11) can be 
verified by the choice of suitable shape functions and 
topological means of network theory. 

V. VERIFICATION OF THE BOUNDARY CONDITION IN THE 
VECTOR POTENTIAL METHOD 

The current flux trough an element’s face is determined 
by the sum of the surrounding edge integrals over T . The 
other way round an edge integral over T  corresponds to a 
current loop around this edge. Therefore, zeroing all edges 
at the boundary of the conducting domain assures the 
condition of equation (11). 

Since current densities in all elements are built as a sum 
of loop currents around the edges, the condition of equation 
(10) is obviously fulfilled. If the elements faces are 
considered as elements of an electrical network, the means 
of the well-known loop current analysis can be applied. This 
is afforded by a tree cotree algorithm. All edges are divided 
into tree and cotree edges. The values of the edges at the 
domain boundary and the tree edges are zeroed. The inner 
cotree edges are treated according to equations (2) to (4). 
No other modifications are required. Thus, the edge integral 
values of the inner cotree edges are the unknowns of the 
SLE. Compared to the FEM, the number of unknowns is 
very small, since there are no unknowns in the air domain 
and many unknowns in the conducting region are eliminated 
[5]. 

VI. VERIFICATION OF THE BOUNDARY CONDITIONS IN THE 
DIRECT METHOD 

In contrast to the vector potential method, the current 
flux is represented by the edges. The edges are considered 
as the element of an electrical circuit and the loop current 
analysis is applied. In order to avoid large loops that would 
lead to increasing computing times and an ill conditioned 
SLE, every loop is limited to the edges surrounding an 
element face. If the mesh consists of hexahedral elements of 
first order, the number of edges per loop is always four. 

 
Figure 5:  Tree (red) on the dual mesh, that detects the 
linearly dependent faces (blue cross). 

Due to the application of loop currents, the conditions of 
equations (10) and (11) are fulfilled. The question now is 

how to detect the linear independent face loops. This is 
done according to the algorithm in chapter V. The centroids 
of the elements are considered as the vertexes of a dual 
mesh. A tree cotree decomposition is run on the dual mesh. 
The faces passed by the cotree edges are the linear 
independent faces, the closed loop integrals over the current 
density are the unknowns of the SLE (see fig. 1). 

VII. REORDERING THE SYSTEM OF THE DIRECT METHOD 
After detecting the linear independent loops, the SLE 

has to be assembled. Assumed that a SLE { } [ ]{ }U = Z I  
with the total number of edges as unknowns is still 
assembled according to equations (6) to (8), a SLE 
{ } { }* * *U = Z I    with the total number of loops as 
unknowns can be obtained by the following reordering 
scheme. 

The information about the loops is stored in a non-
quadratic ( ),l e -matrix [ ]M , 1l n e= − +  is the number of 
loops, e  the number of edges, and n  the number of nodes. 
The entries ijM  of [ ]M  are zero, if edge j  is not part of 
loop i . If edge j  is part of loop i , the entry is either one 
ore minus one, depending on the loop and edge direction. 

Thus, the reordering scheme to obtain the system matrix 
*Z    can easily be described by  

[ ][ ]*Z M Z  =  .         (12) 

The RHS { }*U  of the minimized SLE is then the product of 

the transposed of [ ]M  and the RHS { }U  of the original 
SLE 

{ } [ ] { }* TU = M U .         (13) 

The solution on the edges { }I  is obtained by the product of 

[ ]M  and the loop solution { }*I  

{ } [ ]{ }*I = M I .         (14) 

The direct method showed a more stable behavior. The 
SLE is easier to solve. 

VIII. CONCLUSION 
The efforts to assemble the SLE of the direct method are 

slightly higher than for the assembly of the vector potential 
method, since all edges require an integration routine and 
the number of unknowns is bigger. 
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